• Selection of news and upcoming events

A method to assess Covid-19 transmission risks in indoor settings


MIT researchers have developed a publicly available model based on physics and data from past spreading events.


Two MIT professors have proposed a new approach to estimating the risks of exposure to Covid-19 under different indoor settings. The guideline they developed suggests a limit for exposure time, based on the number of people, the size of the space, the kinds of activity, whether masks are worn, and the ventilation and filtration rates. Their model offers a detailed, physics-based guideline for policymakers, businesses, schools, and individuals trying to gauge their own risks.

The guideline, appearing this week in the journal PNAS, was developed by Martin Z. Bazant, professor of chemical engineering and applied mathematics, and John W. M. Bush, professor of applied mathematics. They stress that one key feature of their model, which has received less attention in existing public-health policies, is providing a specific limit for the amount of time a person spends in a given setting.

Their analysis is based on the fact that in enclosed spaces, tiny airborne pathogen-bearing droplets emitted by people as they talk, cough, sneeze, sing, or eat will tend to float in the air for long periods and to be well-mixed throughout the space by air currents. There is now overwhelming evidence, they say, that such airborne transmission plays a major role in the spread of Covid-19. Bush says the study was initially motivated early last year by their concern that many decisions about policies were being guided primarily by the “6-foot rule,” which doesn’t adequately address airborne transmission in indoor spaces.

Using a strictly quantitative approach based on the best available data, the model produces an estimate of how long, on average, it would take for one person to become infected with the SARS-CoV-2 virus if an infected person entered the space, based on the key set of variables defining a given indoor situation. Rather than a simple yes or no answer about whether a given setting or activity is safe, it provides a guide as to just how long a person could safely expect to engage in that activity, whether it be a few minutes in a store, an hour in a restaurant, or several hours a day in an office or classroom, for example.

“As scientists, we’ve tried to be very thoughtful and only go with what we see as hard data,” Bazant says. “We’ve really tried to just stick to things we can carefully justify. We think our study is the most rigorous study of this type to date.” While new data are appearing every day, and many uncertainties remain about the SARS-CoV-2 virus’ transmission, he says, “We feel confident that we’ve made conservative choices at every point.”

Please, to access the full article visit Life Science Network


biotechdesign.io