• Otávio Santiago

The miracle molecule that could treat brain injuries and boost your fading memory

Carmela Sidrauski wasn’t looking for a wonder drug. Testing thousands of molecules during high-speed automated experiments in the lab of Peter Walter at the University of California, San Francisco, she plucked one of the compounds out of the reject column and moved it into the group that warranted further study. Something about its potency intrigued her.

That was in 2010; today the list of potential therapeutic applications for that molecule sounds almost too good to be true. Since Sidrauski’s decision to look closer, the molecule has restored memory formation in mice months after traumatic brain injuries and shown potential in treating neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Lou Gehrig’s disease (also known as amyotrophic lateral sclerosis, or ALS). Oh, yeah—it also seems to reduce age-related cognitive decline and has imbued healthy animals—mice, at least—with almost photographic memory.

Sidrauski believes the reason the molecule can do so much is that it plays an essential role in how the brain handles stress from physical injuries or neurological diseases. Under siege from such problems, the brain, in essence, shuts down cognitive functions like memory formation to protect itself. The new molecule reverses that. “We didn’t set out to find this—we just kind of bumped into it,” Sidrauski says. “But having a new way to modulate a pathway that could be central to a lot of different pathological states is very exciting.”

Please, to access the full article visit MIT Technology Review