• Selection of news and upcoming events

Treating multiple sclerosis with an antigen-specific cell therapy



Existing multiple sclerosis therapies systematically modulate the immune system to dampen its erroneous attack on the protective myelin sheaths around nerve cells, which is the hallmark of the autoimmune disease. But this approach puts patients at a higher risk of infection.


Scientists at Thomas Jefferson University said they have found a way to train the immune system to tolerate self-antigens that trigger inflammatory responses in MS while leaving the rest of the immune system intact.


They isolated tiny sacs called extracellular vesicles from cells known as oligodendrocytes. The sacs contained myelin antigens, and when they injected those particles into mice, it suppressed MS, according to a new study published in Science Translational Medicine.


Because existing MS therapeutics suppress the immune system in a systemic way, scientists have been trying to find alternative therapies that target the disease in an antigen-specific way. This approach requires understanding which myelin self-antigens are involved in MS. Problem is, disease-causing antigens can differ among patients or change over time in the same patient.


“There are many possible immune-activating antigens in the myelin sheath, but the biggest hurdle is that we don't know which component of myelin is triggering the immune response in MS patients,” Abdolmohamad Rostami, M.D., Ph.D., the study’s senior author, explained in a statement. “Previous studies have used single myelin antigens or combinations of antigens to prevent auto-immunity in animal models, but in humans they have had limited success.”

Please, to access the full article visit Fierce Biotech


biotechdesign.io


DESIGN

2020 © Biotech Design. All rights reserved.

seta.png
  • White LinkedIn Icon

Thanks for your visit.